This blog is a MESA Member Point of View.
If you’re a data scientist, you know the pressure to help your business understand the signals hidden in the vast and diverse stream of IoT data. Businesses need to decipher these signals so they can deliver critical outcomes to enhance the customer experience, improve equipment effectiveness, and drive operational excellence.
But if you’re using batch scoring and various techniques to analyze data at rest, you’re hamstrung by the need to stream, store, and then score the data. Not only is it very time consuming, but it also delays your ability to make decisions in real time which hampers the business’ ability to accelerate performance.
What steps can you take to rapidly convert IoT data into valuable insights for your business?
You need to be able to capture more precise insights at the edge and make real-time intelligent decisions in the cloud. And you want to be able to use the system of your choice to quickly and precisely ingest, understand, and act on the massive and diverse volumes of IoT data in real time. But it can’t be done without streaming analytics and machine learning capabilities.
Here are some thoughts to consider along the journey toward helping your business extract the most value from its IoT data:
When You Think IoT, Think Ingestion
When you think about “ingest”, consider that IoT is about getting access to data that is high-speed, has various forms, and is emitted from various sources. To do so, you need flexible ways to connect to these sources that support the speed and volume of IoT data. You need tools that support various data formats and protocols, and are optimized for high speed data ingestion. Solutions need to include connectors and adaptors for streaming data as well as static data. Streaming data sources typically include IoT devices like machines in a factory, connected vehicles, wearables, and customer browsing, interacting, and purchasing behavior. Static data sources are often overlooked but represent a treasure trove of information that you already have but most likely have not fully tapped into. This static data can be used to enhance the events that originate from streaming sources to provide a richer set of data to analyze. MESA has a blog post called ‘Hidden Treasures in Plain Sight – At the Manufacturer’s Shelf’ that explains more about the topic.
Activate Your Treasure Trove Of Data Through Understanding
This brings me to the second point: Understand. Understanding data means you need to apply a series of transformations and analyses on your data so you can obtain some insight from the vast amounts of available data. This requires analytical techniques that are adapted to the streaming problem space knowing that different problems require different analytical techniques. Often IoT data is high frequency and there’s usually a vast number of dimensions to that data. It’s critical to develop techniques that can help reduce the number of dimensions to those that are most relevant and can help you understand and analyze both unstructured and structured data.
For example, processing video, audio, and text are all necessary to gain the insights needed to make sound decisions and you need techniques which can support those processes and data. Many different techniques can be used to understand the information and having a way to apply these different techniques is important. Your tools need to have a wide range of capabilities including algorithms that can be applied on the streaming data, integration with machine learning, and AI techniques that allow models to be trained offline and then deployed for in-stream scoring. These powerful capabilities can be combined for real-time analyses to discover events of interest.
The Purpose Of All This Is To Act
You need to act once you’ve discovered an interesting event. It’s not good enough to simply identify events and log them somewhere. The point of ingesting these events and applying real-time analyses is to react faster.
React faster so healthcare providers can enhance patient outcomes, retailers can deliver a differentiated customer experience, energy companies can predict machine failures before they occur, and manufacturers can detect objects and classify them immediately. No matter the use case, detection is just the first step. The true value is in the ability to act.
Reaction can be in the form of an alert generated to an operator to investigate a problem, or maybe to dispatch a technician to resolve a potential problem before it becomes a catastrophic failure. This means support is needed for resolution so you can apply business rules and create workflow - enabling cases to be created, routed, resolved, and dispatched. Action can be human actions, or they can be automated feedback loops to control machines for optimized operations, or to reduce wear and prolong machine life.
The objective is to quickly and precisely ingest, understand and act on massive and diverse volumes of IoT data in real time. The quicker you know, the quicker you decide and react. All of which has a big impact on the business, allowing the people to take the actions necessary to make big improvements.
About the Author
Jane Howell
Global IoT Product Manager, SAS
With over 20 years of experience in technology marketing, Jane assists a variety of stakeholders in understanding how the combination of AI and IoT analytics accelerates business performance. Prior to joining SAS, she held marketing leadership roles at GE Oil & Gas Digital, ABB Enterprise Software, and CSC.
No comments:
Post a Comment